If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-23+8x=0
a = 1; b = 8; c = -23;
Δ = b2-4ac
Δ = 82-4·1·(-23)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{39}}{2*1}=\frac{-8-2\sqrt{39}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{39}}{2*1}=\frac{-8+2\sqrt{39}}{2} $
| -48-5n=13 | | 1+6d-14d=-9d-8 | | 1-3(2x+6)=52 | | 36=9x=117 | | 2(11/8+y)=190 | | -2.063d+18=-10.84 | | 7x-16=-x+24 | | -4a+6=41 | | 3(2x-3/4)=3x+6 | | −2(x−1)=1−3x | | -1=7+x/4 | | 2(3x)+2(2x+3)=3(5x-3) | | -3/5t-5/4=1/8t-7/8 | | 16-4x=58 | | 9z=72/13 | | 600+15x=4,200 | | x=−1x=−1 | | X+X+8=x+x+x+1 | | 3/(2580+2920+x)=3000 | | x^2-+9x-486=0 | | (3x+1)+(2x-6)=60 | | C=9/2(k-49) | | 16q=4q-3 | | 62t=58(10-t) | | 0.75x+5=0.50x+9 | | 2W+8=5(w+4) | | 2x^2+6x+16=30 | | 4/3*b+2=4-1/3*b | | 306=-6(-9x+3) | | 5(6b-8)=18b | | 5(1.2p+6)=7.1p+34.4 | | 5/6v=45 |